Gasification and Pyrolysis: Polluting, Expensive, and Risky

Kevin Budris

Staff Attorney, Zero Waste Project

P: 401-228-1910

E: kbudris@clf.org

Conservation Law Foundation

Protecting New England's environment for all people

Agenda:

- Gasification and Pyrolysis Overview
 - Outputs and Emissions
- Gasification is NOT Renewable Energy
- Gasification Prevents Waste Reduction
- Gasification's History of Failures
- We Already Have Real Solutions to Our Waste Problem

Gasification and Pyrolysis Overview

What are Gasification and Pyrolysis?

- "High heat" processing of waste
 - Gasification = low oxygen
 - Pyrolysis = no oxygen
- Comparable to mass burn incineration, but broken into two parts:
 - PART ONE: Waste is heated in oxygen-poor environment to create synthetic fuel
 - PART TWO: That synthetic fuel is burned in an oxygen-rich environment

Sources: Blue Ridge Environmental Defense League at 3-5; Tangri at 2

Gasification Process (Generally)

Collected Waste

Granulator

and Dryer

Dry Waste

Slag, Char, Dust, Ash

High Heat Chamber

H, CO, CO₂, Contaminants NO_x, So_x, Heavy Metals, POPs

Filtration Process (Cyclone, scrubbers, etc.)

CO₂, CO, No_x, So_x, Heavy Metals, POPs Heat

Combustor

Syntus

conservation law foundation

Gasification Outputs: Heat Chamber

- Solids: slag, ash, char, and dust
 - Heavy metals like mercury and lead along with dioxins and furans
 - Landfilled or incinerated
- Toxic fuel mixture:
 - Hydrogen, carbon monoxide, carbon dioxide
 - Nitrogen oxides, sulfur oxides
 - Heavy metals: lead, mercury, cadmium, arsenic
 - POPs: dioxins, furans, PCBs

Sources: Azouly at 47-48; Blue Ridge Environmental Defense League at 3-9; Kaminska-Pietrzak at 7-11; Tangri at 9

Gasification Outputs: Filtration

- "Contaminants":
 - Nitrogen oxides, sulfur dioxides
 - Heavy metals: mercury, lead, etc.
 - POPs: dioxins, furans, PCBs, etc.
- Synthetic Fuel:
 - H, CO, CO₂
 - Nitrogen oxides, sulfur dioxides
 - Heavy metals: mercury, lead, etc.
 - POPs: dioxins, furans, PCBs, etc.

Sources: Azouly at 47-48; Blue Ridge Environmental Defense League at 3-9; Kaminska-Pietrzak at 7-11; Tangri at 9

Synfuel

Filtration Process

(Cyclone, scrubbers, etc.)

Gasification Outputs: Combustion

- Heat
- Air emissions:
 - Carbon monoxide, carbon dioxide
 - Nitrogen oxides, sulfur dioxides
 - Heavy metals: lead, mercury, arsenic
 - POPs: dioxins, furans, PCBs, etc.
 - Particulate matter
 - Worse emissions profile than fracked gas, diesel, and gasoline

Sources: Azouly at 47-48; Blue Ridge Environmental Defense League at 3-9; Kaminska-Pietrzak at 7-11; Tangri at 9

Gasification vs Mass Burn Incineration

GASIFICATION:

- Heat
- Ash and char
- Air pollutants:
 - Carbon Dioxide
 - Nitrogen Oxides
 - Sulfur Oxides
 - Mercury and Lead
 - Dioxins and Furans

MASS BURN:

- Heat
- Ash and char
- Air pollutants:
 - Carbon Dioxide
 - Nitrogen Oxides
 - Sulfur Oxides
 - Mercury and Lead
 - Dioxins and Furans

Gasification Does NOT Generate Renewable Energy

Gasification and Carbon Emissions

- "Thermal conversion" of materials that contain stored carbon releases that carbon to the atmosphere
- Plastics = fossil fuels
- Burning plastics = burning fossil fuels

Gasification vs Zero Waste

INCINERATION VS. RECYCLING

 Source reduction, recycling, and composting conserve more energy than high heat processes can generate and provide significant reductions in greenhouse gas emissions

Sources: Donahue at 11; U.S. EPA at 116-19

conservation law foundation

Gasification Wastes Energy

- Gasification and pyrolysis consume as much as 87 times more energy than can be generated by burning the synthetic fuel they produce
- The laws of thermodynamics are inviolable

Source: Rollinson

Gasification is Expensive

- High energy consumption
- High capital costs:
 - Industry estimates range from \$7,500 to \$11,500 per kW generation capacity
 - A gasifier with a 15 MW output could cost as much as \$172.5 million
 - More than 2x the capital costs of wind and solar
- High costs mean high tip fees

Source: Tangri at 7

Gasifying Waste is Challenging

- Gasification and pyrolysis were originally designed to burn homogenous fuel sources like wood and coal
- Municipal solid waste is anything but homogenous

Sources: Rhode Island

Solid Waste Characterization Study at 13; Rollinson; Tangri at 5-6

conservation law foundation

Gasifiers Demand Fuel

- Gasification and pyrolysis facilities depend on carbon-rich feedstock such as:
 - Organic waste
 - Paper
 - Plastic
- These facilities therefore compete with preferred strategies like source reduction, composting, anaerobic digestion, and recycling

Gasifiers Demand Fuel

You can't feed the beast and reduce waste at the same time

Gasification vs Zero Waste

Waste Management Strategy Cost Comparison (\$/ton)

High heat waste treatment is significantly more expensive than zero waste alternatives like recycling and composting

Source: Donahue at 15

conservation law foundation

Gasification vs Zero Waste

 High heat waste treatment generates fewer jobs than recycling and composting

 Composting: 4-15x as many jobs per ton processed

 Recycling: 12-20x as many jobs per ton processed

conservation law foundation

Gasification's History of Failures

- Scotgen—Dargavel, Scotland: Closed 2013
 - Consistently exceeded emissions limits for dioxins and other pollutants
 - Generated significantly less energy than expected
 - Operating permit revoked by Scottish Environmental Protection Agency

Source: Tangri at 11

- Plasco—Ottawa, Canada: Closed 2015
 - Plasma gasification demonstration project failed to comply with emissions limits, including limits for sulfur dioxide
 - Facility only processed 7% of the waste total for which it was projected
 - Plasco filed for bankruptcy in 2015

Source: Tangri at 11

- Caithness Heat and Power—Scotland: Closed 2009
 - Biomass gasification plant planned to provide heat to 200 local homes
 - Closed after one year of operations due to technological failures and financial problems
 - Resulted in £11.5 million loss to Highland Council

- Thermoselect—Karlsruhe, Germany: Closed 2002
 - Regularly exceeded air emissions limits for dioxins, nitrogen oxides, particulate matter, and hydrogen chlorides
 - Generated no electricity some years
 - During five years of operation, processed only 1/5 of its contracted waste
 - Facility owner lost the equivalent of \$500 million

Source: Tangri at 13

- Brightstar—Wollongong, Australia: Closed 2004
 - Significant exceedances of emissions limits for arsenic, sulfur dioxides, carbon monoxide, dioxins, hydrogen chloride, and heavy metals
 - Parent company lost the equivalent of \$134 million on the facility

Source: Tangri at 13

We Have Real Solutions to Our Waste Problem

Refuse-Rethink-Redesign-Reduce-Reuse

- Source reduction
- Composting/anaerobic digestion
- Extended producer responsibility
- Better recycling

Source: Rhode Island Solid Waste Characterization Study at 13

The Path Ahead

- Rhode Island can reduce emissions, save money, and protect communities through zero waste initiatives
- Gasification and pyrolysis are incompatible with a healthy, thriving Rhode Island

Questions?

Sources:

- David Azouly et al., *Plastic & Health: The Hidden Costs of a Plastic Planet* 48 (2019), https://www.ciel.org/wp-content/uploads/2019/02/Plastic-and-Health-The-Hidden-Costs-of-a-Plastic-Planet-February-2019.pdf.
- Blue Ridge Environmental Defense League, Waste Gasification Impacts on the Environment and Public Health 6 (2009), http://www.bredl.org/pdf/wastegasification.pdf.
- Marie Donahue, Institute for Local Self-Reliance, Waste Incineration: A Dirty Secret in How States Define Renewable Energy 11 (2018), https://ilsr.org/wp-content/uploads/2018/12/ILSRIncinerationFlnalDraft-6.pdf.
- Natalia Kaminska-Pietrzak & Adam Smolinski, Selected Environmental Aspects of Gasification and Co-Gasification of Various Types of Waste, 12 Journal of Sustainable Mining 6 (2013).
- Rhode Island Solid Waste Characterization Study (2015), http://www.rirrc.org/sites/default/files/2017-02/Waste%20Characterization%20Study%202015.pdf.
- Andrew Rollinson, Why Pyrolysis and 'Plastic to Fuels' Is Not a Solution to the Plastics Problem (Dec. 4, 2018), https://www.lowimpact.org/pyrolysis-not-solution-plastics-problem/.
- Neil Tangri & Monica Wilson, Global Alliance for Incinerator Alternatives, *Waste Gasification & Pyrolysis: High Risk, Low Yield Processes for Waste Management* (2017), https://www.no-burn.org/wp-content/uploads/Waste-Gasification-and-Pyrolysis-high-risk-low-yield-processes-march-2017.pdf.
- Tellus Institute, Assessment of Materials Management Options for the Massachusetts Solid Waste Master Plan Review
 (2008), https://www.tellus.org/pub/Final Report-Materials Management Options for MA SW Master Plan Review With Appendices 12-08.pdf.
- Tellus Institute, More Jobs, Less Pollution: Growing the Recycling Economy in the U.S. 34–35 (2011), https://www.nrdc.org/sites/default/files/glo_11111401a_0.pdf.
- U.S. EPA, Solid Waste Management and Greenhouse Gases, a Life-Cycle Assessment of Emissions and Sinks (3d ed. 2006).